ECE 307 Homework 3 Solutions

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

■ Notation:

N manufacturers

$$j = 1, 2, ..., N$$

M plants

$$i = 1, 2, ..., M$$

D classes of boards:

$$k = 1, 2, \ldots, D$$

plant i requires R_{ik} boards

$$i = 1, ..., M$$

$$k = 1, \ldots, D$$

```
egin{array}{lll} x_j &=& 	ext{number of boards from manufacturer } j \\ c_j &=& 	ext{costs per board from manufacturer } j \\ U_j &=& 	ext{maximum number of boards from manufacturer } j \\ p_{jk} &=& 	ext{fraction of class } k 	ext{ boards from manufacturer } j \\ \end{array}
```

 $c_{ji} = costs$ of shipping per board from manufacturer j to plant i

$$j = 1, ..., N$$
 $i = 1, ..., M$ $k = 1, ..., D$

facturer j

© 2005 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved

☐ Observations:

$$p_{jk} \ge 0$$
 and $\sum_{k=1}^{D} p_{jk} = 1$ $j = 1, ..., N$

Decision variables:

 x_j = number of boards from manufacturer j

 x_{ji} = number of boards shipped from manufacturer j to plant i

□ Objective:

$$min \sum_{j=1}^{N} c_j x_j + \sum_{j=1}^{N} \sum_{i=1}^{M} c_{ji} x_{ji}$$

□ Constraints:

$$\sum_{j=1}^{N} p_{jk} x_{ji} = R_{ik} \quad k = 1, 2, ..., D, i = 1, ..., M$$

$$x_{j} \leq U_{j} \quad j = 1, 2, ..., N$$

$$\sum_{i=1}^{M} x_{ji} \leq x_{j} \quad j = 1, 2, ..., N$$

$$x_{j} \geq 0 \quad j = 1, 2, ..., N$$

$$x_{ji} \geq 0 \quad j = 1, 2, ..., N \quad i = 1, 2, ..., M$$

FAYE STOUT COMPANY: NOTATION

 x_{ijk} = quantity of fiber k shipped to customer i to satisfy the order q_{ij} for fiber j fiber k k=j shipped product demanded is the product shipped

fiber j ordered

$$k \neq j$$
a substitute product

a substitute product is shipped

$$j = 1, \ldots, F$$

$$k = 1, \ldots, F$$

$$i = 1, \ldots, C$$

$$F$$
 = number of fiber types

C = number of customers

FAYE STOUT COMPANY: NOTATION

 q_{ij} = quantity of fiber j demanded by the custome ri

 A_j = quantity of fiber j available for shipment

 $c_{ijk} = {\sf costs}$ per unit of shipping fiber k to customer i who ordered fiber j and the term may include a penalty for substitution

Note: whenever substitution is not allowed, such a penalty is made very large

FAYE STOUT COMPANY: NOTATION

 x_j = fraction of each customer's fiber j order that is met with fiber j and permitted substitutes; x_j is uniform for all customers i

 $d_{ij}=$ penalty per unit of fiber j ordered by customer i but not filled with fiber j or the

© 2005 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

permitted substitutes

FAYE STOUT COMPANY: INFORMATION PROVIDED

$$\Phi_j$$
 = fair share for fiber j

quantity of fiber received

.95
$$\Phi_j \leq$$
 by each customer i of $\leq 1.05 \; \Phi_j$ fiber j in short supply

FAYE STOUT COMPANY: FLOWS

 q_{ij} are fixed and known data – parameters

FAYE STOUT COMPANY: FLOWS

fiber j delivery to customers

FAYE STOUT COMPANY: FLOWS

availability of fiber j is A_j ; however, demand is

$$\sum_{i=1}^{C} q_{ij} = Q_j \leftarrow \text{total demand for fiber } j [\text{fixed}]$$

fair share is defined by

$$\Phi_j \triangleq \frac{A_j}{Q_j} \leftarrow \text{ fixed parameter for } j=1,2,\ldots,F$$

fiber j is in short supply if and only if

$$\Phi_i < 1$$

FAYE STOUT COMPANY: DECISION VARIABLES

 x_{ijk} = amount of fiber k sent to meet customer i's demand for fiber j

 y_{ij} = amount of fiber j not supplied to customer i, or more precisely, amount of fiber j ordered by customer i but not filled with either fiber j or the permitted

© 2005 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

substitutes

FAYE STOUT COMPANY: OBJECTIVE

min
$$\sum_{i=1}^{C} \sum_{j=1}^{F} \sum_{k=1}^{F} c_{ijk} x_{ijk} + \sum_{i=1}^{C} \sum_{j=1}^{F} c_{ijk} x_{ijk}$$

costs of items supplied

penalties
incurred
for items
not supplied

FAYE STOUT COMPANY: CONSTRAINTS

O balance

$$\sum_{k=1}^{F} x_{ijk} + y_{ij} = q_{ij} \quad \begin{array}{c} i=1, \dots, C \\ j=1, \dots, F \end{array}$$

O availability

$$\sum_{i=1}^{C} x_{ijj} \leq A_{j} \quad j=1,\ldots,F$$

O uniform fraction of order filled for fiber j

$$\frac{1}{q_{ii}} \sum_{k=1}^{F} x_{ijk} = x_j \quad i=1,2,...,C$$

FAYE STOUT COMPANY: CONSTRAINTS

O fair share constraints

$$j=1,2,\ldots,F$$

$$0.95\,\varPhi_j \leq x_j \leq 1.05\,\varPhi_j$$
 such that $\varPhi_j < 1$

O nonnegativity

$$x_{ijk} \geq 0 \qquad \forall i, \forall j, \forall k$$
$$y_{ij} \geq 0 \qquad \forall i, \forall j$$

- ☐ Problem data:
 - 18 month production schedule
 - O each worker produces 300 bottles per month
 - O stored items from month t to month t+1incur a 5 % loss
 - O $n_0 = 50$ workers for initial month

O attrition rates for workers are

10 % for those who are idled

1 % for those who are in production

Decision variables are associated with costs

 $c_t \leftrightarrow e_t$ = number of workers in production

 $h_t \leftrightarrow x_t = \text{number of workers hired}$

 $f_t \leftrightarrow y_t = \text{number of workers released}$

 $n_t \leftrightarrow d_t = \text{number of workers idle}$

decisions at the beginning of each month t

month t = 1, 2, ..., 18

 $i_t \leftrightarrow s_t$ = bottles in storage at the end of the month t

 S_t = number of bottles sold in month t

□ Terminal constraints are given by

$$s_{18} \geq I/0.95$$

work force at
$$t = 19 \ge W$$

- The objective is to minimize the costs of production
 - we ignore costs of resources other than labor for period t and so costs are employment plus storage for each month t

$$c_t e_t + h_t x_t + f_t y_t + n_t d_t + i_t s_t$$

O the objective is

$$min \sum_{t=1}^{18} \left[c_t e_t + h_t x_t + f_t y_t + n_t d_t + i_t s_t \right]$$

THE MONTY ZOOMA COMPANY: CONSTRAINTS

O work-force constraints:

period 1

$$50 + x_1 - y_1 = e_1 + d_1$$

 $.99e_1 + .9d_1 + x_2 - y_2 = e_2 + d_2$

THE MONTY ZOOMA CORPORATION

general relationship

$$.99e_{t-1} + .9d_{t-1} + x_t - y_t = e_t + d_t \quad t = 2, ..., 18$$

terminal requirement

$$.99e_{18} + .9d_{18} \geq W$$

THE MONTY ZOOMA CORPORATION: CONSTRAINTS

O production levels

general relationship

$$300 e_t = S_t + S_t - .95 S_{t-1} t = 1, ..., 18$$

terminal requirements

THE MONTY ZOOMA CORPORATION: PROBLEM STATEMENT

$$\min \sum_{t=1}^{18} \left\{ c_t e_t + h_t x_t + f_t y_t + n_t d_t + i_t s_t \right\}$$

$$e_1 + d_1 - x_1 + y_1 = 50$$

$$.99e_{t-1} + .9d_{t-1} + x_t - y_t - e_t - d_t = 0 \quad t = 2, \dots, 18$$

$$.99e_{18} + .9d_{18} \ge W$$

$$300e_1 - s_1 = S_1$$

$$300e_t - s_t + 0.95s_{t-1} = S_t \quad t = 2, \dots, 18$$

$$0.95s_{18} \ge I$$

© 2005 – 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

 $e_t, x_t, y_t, d_t, s_t \geq 0$